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Preface

This book is a slimmed down, student edition of ‘Solid State Chemistry and its Applications’ whose second
edition is scheduled for publication in 2015/6. It is modelled on the authors’ ‘Basic Solid State Chemistry’, but
has been completely rewritten with about 40% new material added and all the diagrams drawn professionally,
in full colour. The nine chapters in ‘Basic’ have become ten in this new edition since ‘Magnetic and Optical
Properties’ is split into separate chapters.

In the period since the second edition of ‘Basic’ was published in 1999, we have witnessed many major new
discoveries and developments in the solid state chemistry of inorganic materials with topics such as colossal
magnetoresistance, multiferroics, light emitting diodes and graphene. New materials synthesis techniques
have evolved such as mechanosynthesis, microwave-hydrothermal synthesis and atomic layer deposition and
of course, there have been many improvements in the techniques used to characterise solids including use
of synchrotrons for diffraction and spectroscopy as well as high resolution scanning transmission electron
microscopy permitting atomic-level identification and structural imaging. It was felt that an updated version
of both ‘Basic’ and ‘Solid State Chemistry and its Applications’ was long overdue, therefore.

A major feature of this new edition is the extensive coverage of the crystal structures of important
families of inorganic solids. Purchasers of the book will be able to download, free, a bespoke and easy-
to-use CrystalMaker R� viewer program. The CrystalViewer software is accompanied by more than 100
crystal structure models which users will be able to view on their computers with the facility to rotate the
structures, view them from different orientations and either highlight or hide different structural features.
CrystalViewer and the accompanying structure files can be downloaded from the companion website at
http://www.wiley.com/go/west/solidstatechemistrystudent.

Many people have helped and encouraged me in preparing this new edition. Special thanks are due to:
John McCallum who produced many of the crystal structure drawings and files, Frances Kirk who prepared
the whole manuscript, in electronic format, and Wiley staff Sarah Hall and Sarah Tilley for their enthusiastic
encouragement and involvement: in particular, Sarah Hall was instrumental in making the CrystalMaker R�

arrangements and Sarah Tilley oversaw all the artwork preparations.

Anthony R. West
Sheffield

July 2013
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Chemistry is an evolving subject! Traditionally, there have been three branches of chemistry: organic, physical
and inorganic, with some arguments in favour of including analytical as a fourth branch. An alternative, fairly
new classification (favoured by the author!) divides chemistry into two broad areas: molecular (which includes
liquids and gases) and non-molecular (or solid state). The ways in which we think about, make, analyse and
use molecular and non-molecular substances are completely different, as shown by a comparison of one
‘simple’ substance in each category, toluene and aluminium oxide:

Comparison of the chemistries of molecular and non-molecular materials

Characteristic Toluene Aluminium oxide

Formula Fixed, C6H5CH3 Usually fixed, Al2O3, but for other oxides may be
variable, e.g. Fe1-xO

Are defects
present?

Not allowed: missing or mis-placed
atoms give rise to different molecules

Unavoidable: small concentration of vacancies,
interstitials and dislocations are always present

Doping
possibilities

Not possible without producing a
different molecule

Doping or solid solution formation allows
control and optimisation of properties, e.g.
ruby is Cr-doped Al2O3

Structure
and its
determination

Molecular structure can be determined
spectroscopically: NMR/Mass Spec/IR.
Determine packing arrangement, bond
lengths and angles, by single crystal
X-ray diffraction. Usually, structural
information is then complete.

Full characterisation of a solid requires structural
and compositional information across the
length scales from local, to unit cell, nano and
microscales. Many diffraction, spectroscopic
and microscopic techniques are needed for
full characterisation.

Properties
and
applications

Controlled by molecular formula and
configuration; cannot be modified by
doping. Some properties (e.g.
pharmaceutical activity) may depend
on molecular packing arrangements in
crystals.

Properties/applications depend on crystal
structure, defects, dopants, surface structure,
particle size and whether the material is a
powder, single crystal, film, etc. Consider the
diverse applications of Al2O3: films and
ceramics used as insulators; powders used as
abrasive; with Cr3+ dopants, ruby is used for
lasers; porous solids used as catalyst supports.
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Thus, for toluene, once its formula and molecular structure had been determined there were few remaining
issues to be resolved other than, perhaps, the detailed packing arrangement of molecules in crystalline toluene
at low temperatures or the possible discovery and evaluation, even today, of as-yet unknown chemical,
biological or pharmaceutical properties of pure toluene.

Alumina, by contrast, is a highly complex material; its properties, and therefore potential applications,
depend on different aspects of its structure (bulk, defect, surface, nano), the methods needed to fabricate it
in different forms and shapes, the possibility of doping to modify its properties and the characterisation or
determination of its structure (and its composition, whether homogeneous or heterogeneous, if doped) across
all length scales. This is solid state chemistry!

The biggest contrast between molecular and non-molecular materials is that the latter can be doped,
allowing modification and control of properties such as magnetism, superconductivity and colour/optical
band gap. By contrast, attempts to dope molecules are inevitably frustrated since replacing one atom in the
molecule by another, or creating defects such as missing atoms, lead to entirely different molecules.

In recent decades, materials chemistry has emerged as a distinct branch of chemistry which covers both non-
molecular, solid state materials (oxides, halides, etc.) and many molecular materials (especially, functional
polymers and organic solids with potentially useful physical properties). Materials chemistry cuts across the
traditional disciplines of chemistry but also includes something extra which is an interest in the physical
properties of compounds and materials. In the past, solid state physics and materials science have been the
usual ‘home’ for physical properties; but now, they are an intrinsic part of solid state and materials chemistry.

The distinction between materials chemistry and materials science is often unclear but can be summarised
broadly as follows:

Materials chemistry

Synthesis – structure determination – physical properties – new materials

Materials science

Processing and fabrication – characterisation – optimisation of properties and testing – improved/new
materials for engineering applications in products or devices.

Materials science focuses on materials that are already known to be useful or have the potential to
be developed for applications, either by compositional control to optimise properties or by fabrication into
desired forms, shapes or products. Materials science therefore includes whatever aspects of chemistry, physics
and engineering that are necessary to achieve the desired aims.

Materials chemistry is much more than just a subset of materials science, however, since it is freed from
the constraint of a focus on specific applications; materials chemists love to synthesise new materials and
measure their properties, some of which may turn out to be useful and contribute to the development of new
industries, but they do this within an overarching interest in new chemistry, new structures and improved
understanding of structure – composition – property relationships.

A curious fact is that, in the early days of chemistry, inorganic chemistry had as its main focus, the elements
of the periodic table and their naturally occurring or easy-to-make compounds such as oxides and halides.
Inorganic chemistry subsequently diversified to include organometallic chemistry and coordination chemistry
but interestingly, many traditional inorganic materials have returned to centre-stage and are now at the heart
of solid state materials science. Examples include: Cr-doped Al2O3 for lasers; doped Si semiconductors
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for microelectronics; doped ZrO2 as the solid electrolyte in solid oxide fuel cells; BaTiO3 as the basis of
the capacitor industry with a total annual production worldwide exceeding 1012 units; copper oxide-based
materials for superconductor applications; and many, many more. The scope for developing new solid state
materials/applications is infinite, judging by the ‘simple’ example of Al2O3 described above. Most such
materials tend not to suffer from problems such as volatilisation, degradation and atmospheric attack, which
are often a drawback of molecular materials, and can be used safely in the environment.

It is important to recognise also that physical properties of inorganic solids often depend on structure at
different length scales, as shown by the following examples:

Local/defect
structure

Unit cell
‘average’ structure

Nanostructure Microstructure

Optical properties
of ruby:- Al2O3:Cr

CdS colloids,
colour and band
gap depend on

particle size

β-/ γ-Ca2SiO4 and
their different hydration

capabilities

Strength of
metals and
ceramics

Thus in the case of ruby, which is a natural gemstone and was the first material in which LASER action – light
amplification by stimulated emission of radiation – was demonstrated, two structural aspects are important.
One is the host crystal structure of corundum, α-Al2O3 and the other is the Cr3+ dopant which substitutes
at random for about 1% of the Al3+ ions in the corundum lattice: the Cr-O bond lengths and the octahedral
site symmetry are controlled by the host structure; the two together combine to give the red ruby colour by
means of d–d transitions within the Cr chromophore and the possibility of accessing the long-lived excited
states that are necessary for LASER action.

A remarkable example of the effect of crystal structure details at the unit cell scale on properties is shown
by dicalcium silicate, Ca2SiO4 which is readily prepared in two polymorphic forms at room temperature. One,
the β-polymorph, reacts with water to give a semicrystalline calcium silicate hydrate which sets rock-solid
and is a main constituent of concrete; the other polymorph, γ -Ca2SiO4, does not react with water. Just think,
the entire construction industry rests on the detailed polymorphism of dicalcium silicate! It is not sufficient
that one of the key components of cement has the right composition, Ca2SiO4; in addition, the precise manner
in which ions are packed together in the solid state is critical to its hydration properties and whether or not it
turns into concrete.

At the nanoscale, crystalline particles may contain many hundreds of unit cells but often their properties
are different from powders, ceramics or single crystals of the same material with larger-sized grains simply
because of the influence of surface energies. In small nanoparticles, surface free energies and structures
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increasingly dominate the total free energy of a material, as shown by the colour, and associated band gap, of
CdS nanoparticles (or colloids in older terminology) which can be fine-tuned by controlling the particle size.

Some properties are determined by structure at the micron (1 μm = 103 nm = 104 Å = 10−3 mm) scale
and this is the reason why ‘microstructure’ features strongly in the characterisation of metals and ceramics,
primarily using optical and electron microscopy techniques. Frequently, impurities/dopants may precipitate
at grain boundaries and surfaces and these can have a dramatic influence on for instance, the mechanical
properties.

These examples illustrate the awesome challenges that must be met before an inorganic solid can be
regarded as fully characterised across the length scales. This, coupled with the enormous number of inorganic
crystal structures that are known, and the possibility to introduce dopants which modify properties, underlines
why solid state chemistry is a central subject to many areas of physical science, engineering and technology.

This book concerns solid state chemistry and focuses on inorganic solids: their crystal structures, defect
structures and bonding; the methods used to synthesise them and determine their structures; their physical
properties and applications. Organic and other molecular materials are included in the coverage if their
properties in the solid state complement, or relate to, those of inorganic solids. Physical properties are an
intrinsic part of solid state chemistry since the whole area of structure–property relations requires the insights
and input of chemistry to synthesise and characterise materials, as well as a good understanding of physical
properties and the factors that control them.



Companion Website

This textbook is supported by a website which contains a variety of supplementary resources:

http://www.wiley.com/go/west/solidstatechemistrystudent

Online you will find PowerPoint slides of all figures from the book, as well as solutions to the set of questions.
The website also gives you access to a CrystalMaker R� viewer program. The CrystalViewer software is
available for Windows and Mac, and is accompanied by a broad array of crystal structures for you to view
and manipulate.

CrystalViewer

CrystalViewer is a visualisation program for displaying and manipulating crystal structures. The
CrystalViewer software facilitates the exploration of crystal structures from the book in three dimen-
sions, allowing users to view the structures in different orientations, and highlight/hide different struc-
tural features so as to aid the interpretation of complex crystal structures. The CrystalViewer program is
accompanied by over 100 crystal structure files; many of these structures relate directly to illustrations
from the book, identified by their figure numbers, and a variety of additional structures are provided to
complement the concepts and applications discussed in the text.

The CrystalViewer software and accompanying structure files can be downloaded from the companion
website at http://www.wiley.com/go/west/solidstatechemistrystudent

CrystalMaker®CrystalMaker Software Ltd, www.crystalmaker.com

CaCu3Ti4O12

An example of how a crystal structure can appear very different, depending on which aspects are
emphasised, is shown here for CaCu3Ti4O12, in which the two diagrams highlight either the TiO6

octahedra or the CuO4 square planar units.
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Crystal Structure Library

A Crystal Structure Library is available on the companion website containing >100 structures which can be
examined in detail using the CrystalViewer Software. The structures which correspond directly to figures in
the book are listed below, with the relevant figure number noted in parentheses. Many more crystal structures
are available online, including minerals and other inorganic structures. Further structures may be added from
time to time.

Major Inorganic Structure Types (and relevant book diagrams)

β-alumina, NaAl11O17 (8.23 and 8.24)
BaTiO3 (8.40)
bcc metal (2.12)
Brass, ZnCu (2.11)
Brownmillerite, Ca2(Fe,Al)2O5 (1.42)
CaC2 (1.10)
CaCu3Ti4O12 (1.42)
CdCl2 (1.40)
Cdl2 (1.39)
Chevrel Phase, BaMo6S8 (8.6)
Corundum, α-Al2O3 (1.46)
CsCl (1.36)
Diamond (1.33)
fcc metal (1.20)
Fluorite/antifluorite, CaF2 (1.29, 1.30 and 1.34)
Garnet, Y3Fe5O12 (1.49)
GdFeO3 (1.41)
hcp metal (1.21)
Hollandite (8.27)
Ilmenite, FeTiO3 (1.46)
K2NiF4 (1.50)
Layered double hydroxides (4.11)

Li3N (8.32)
LiCoO2/α-NaFeO2 (8.35)
LiNbO3 (1.46)
Magnetoplumbite (9.14)
MgB2 (1.51)
Nasicon, NaZr2(PO4)3 (8.27)
Nickel arsenide, NiAs (1.35)
Olivine, LiFePO4 (1.45)
PbFCl, matlockite (8.6)
PbO (3.14)
Perovskite, SrTiO3 (1.41)
Pyrochlore (1.48)
Rock salt, NaCl (1.2, 1.29 and 1.31)
Rutile, TiO2 (1.37)
Spinel (1.44)
Tetragonal tungsten bronze (1.43)
Wurtzite, ZnS (1.35)
YBa2Cu3O6 (8.8)
YBa2Cu3O7 (8.8)
Zinc blende/sphalerite, ZnS (1.29 and 1.33)
ZrCuSiAs (8.6)
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1
Crystal Structures and Crystal Chemistry

Solid state chemistry is concerned mainly with crystalline inorganic materials, their synthesis, structures,
properties and applications. A good place to begin is with crystal structures and crystal chemistry. All
necessary crystal structure information is contained in data on unit cells, their dimensions and the positions or
atomic coordinates of atoms inside the unit cell. Crystal chemistry combines this basic structural information
with information about the elements, their principal oxidation states, ionic radii, coordination requirements
and preferences for ionic/covalent/metallic bonding. A working knowledge of the Periodic Table and the
properties of elements is, of course, invaluable to be able appreciate crystal chemistry, but conversely,
knowledge of crystal structures and especially crystal chemistry provides a very useful way to gain increased
understanding of the elements and their compounds.

Many of the properties and applications of crystalline inorganic materials revolve around a surprisingly
small number of structure types. In this chapter, the main families of inorganic structures are reviewed,
especially those which have interesting properties; more details of the vast array of structures may be found
in the encyclopaedic text by Wells and also in the Wyckoff Crystal Structures book series. First, however, we
must consider some basic concepts of crystallography.

1.1 Unit Cells and Crystal Systems

Crystals are built up of regular arrangements of atoms in three dimensions; these arrangements can be
represented by a repeat unit or motif called the unit cell. The unit cell is defined as the smallest repeating
unit which shows the full symmetry of the crystal structure. Let us see exactly what this means, first in two
dimensions. A section through the NaCl structure is shown in Fig. 1.1(a); possible repeat units are given in
(b) to (e). In each, the repeat unit is a square and adjacent squares share edges and corners. Adjacent squares
are identical, as they must be by definition; thus, all the squares in (b) have Cl− ions at their corners and
centres. The repeat units in (b), (c) and (d) are all of the same size and, in fact, differ only in their relative
position. The choice of origin of the repeat unit is to some extent a matter of personal taste, even though
its size, shape and orientation are fixed. The repeat unit of NaCl is usually chosen as (b) or (c) rather than
(d) because it is easier to draw and visualise the structure as a whole if the repeat unit contains atoms or ions
at special positions such as corners and edge centres. Another guideline is that usually the origin is chosen so
that the symmetry of the structure is evident (next section).

Solid State Chemistry and its Applications, Second Edition, Student Edition. Anthony R. West.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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(a) (b) (c)

(d)

Na Cl

(e) (f)

1 2

Figure 1.1 (a) Section through the NaCl structure, showing (b) to (e) possible repeat units and (f) incorrect
units.

In the hypothetical case that two-dimensional (2D) crystals of NaCl could form, the repeat unit shown in
(e), or its equivalent with Cl at the corners and Na in the middle, would be the correct unit. Comparing (e)
and, for example, (c), both repeat units are square and show the 2D symmetry of the structure; as the units in
(e) are half the size of those in (c), (e) would be preferred according to the above definition of the unit cell.
In three dimensions, however, the unit cell of NaCl is based on (b) or (c), rather than (e) because only they
show the cubic symmetry of the structure (see later).

In (f) are shown two examples of what is not a repeat unit. The top part of the diagram contains isolated
squares whose area is one-quarter of the squares in (c). It is true that each square in (f) is identical but it is
not permissible to isolate unit cells or areas from each other, as happens here. The bottom part of the diagram
contains units that are not identical; thus square 1 has Na in its top right corner whereas 2 has Cl in this position.

The unit cell of NaCl in three dimensions is shown in Fig. 1.2; it contains Na at the corner and face centre
positions with Cl at the edge centres and body centre. Each face of the unit cell looks like the unit area shown

Cl

Na

a
a

a

Figure 1.2 Cubic unit cell of NaCl, a = b = c.



3 Crystal Structures and Crystal Chemistry

Table 1.1 The seven crystal systems

Crystal system Unit cell shapeb Essential symmetry Allowed lattices

Cubic a = b = c, α = β = γ = 90◦ Four threefold axes P, F, I
Tetragonal a = b �= c, α = β = γ = 90◦ One fourfold axis P, I
Orthorhombic a �= b �= c, α = β = γ = 90◦ Three twofold axes or mirror planes P, F, I, A (B or C)
Hexagonal a = b �= c, α = β = 90◦, γ = 120◦ One sixfold axis P
Trigonal (a) a = b �= c, α = β = 90◦, γ = 120◦ One threefold axis P
Trigonal (b) a = b = c, α = β = γ �= 90◦ One threefold axis R
Monoclinica a �= b �= c, α = γ = 90◦, β �= 90◦ One twofold axis or mirror plane P, C
Triclinic a �= b �= c, α �= β �= γ �= 90◦ None P

aTwo settings of the monoclinic cell are used in the literature, the most commonly used one given here, with b as the unique axis and the other
with c defined as the unique axis: a �= b �= c, α = β = 90◦, γ �= 90◦.
bThe symbol �= means ‘not necessarily equal to’. Sometimes, crystals possess pseudo-symmetry. For example, a unit cell may be geometrically
cubic but not possess the essential symmetry elements for cubic symmetry; the true symmetry is then lower, perhaps tetragonal.

in Fig. 1.1(c). As in the 2D case, the choice of origin is arbitrary; an equally valid unit cell could be chosen
in which Na and Cl are interchanged. The unit cell of NaCl is cubic. The three edges: a, b and c are equal in
length. The three angles: α (between b and c), β (between a and c) and γ (between a and b) are all 90◦. A
cubic unit cell also possesses certain symmetry elements, and these, together with the shape define the cubic
unit cell.

The seven crystal systems listed in Table 1.1 and shown in Fig. 1.3 are the seven independent unit
cell shapes that are possible in three-dimensional (3D) crystal structures. Six of these unit cell shapes are
closely inter-related and are either cubic or can be derived by distorting a cube in various ways, as shown in
Fig. 1.3(b).

Thus, if one axis, c, is of different length to the others, the shape is tetragonal; if all three axes are different,
the shape is orthorhombic. If, now, one of the angles, β, is not 90◦, the shape is monoclinic, whereas if all
three angles differ from 90◦, the shape is triclinic. Finally, if the cube is stretched, or compressed, along a
body diagonal so that all three angles remain equal, but different from 90◦, the shape is trigonal.

The remaining unit cell shape is hexagonal. A hexagonal-shaped box is shown in Fig. 1.3 and discussed
later with reference to Fig. 1.21, but the true unit cell is only one-third of this size, as shown.

Although it is common practice to describe unit cells by their shapes, it is more correct to describe them
by the presence or absence of symmetry. Thus, for example, if a unit cell has four intersecting threefold axes,
it must be cubic in shape; the reverse does not necessarily apply and the unit cell could be fortuitously cubic
but not have the threefold symmetries in the atomic arrangements. The essential symmetry for each crystal
system is given in the third column of Table 1.1. Let us deal next with symmetry.

1.2 Symmetry

1.2.1 Rotational symmetry; symmetry elements and operations

Symmetry is most easily defined using examples. Consider the silicate tetrahedron shown in Fig. 1.4(a). If it
is rotated about an axis passing along the vertical Si–O bond, then every 120◦ the tetrahedron finds itself in
an identical position. Effectively, the three basal oxygens change position with each other every 120◦. During
a complete 360◦ rotation, the tetrahedron passes through three such identical positions. The fact that different
(i.e. >1) identical orientations are possible means that the SiO4 tetrahedron possesses symmetry. The axis
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Figure 1.3 (a) The seven crystal systems and their unit cell shapes; (b) five of the seven crystal systems can be
derived from cubic by structural distortions.
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Figure 1.4 (a) Threefold and (b) twofold rotation axes; (c) the impossibility of forming a complete layer of
pentagons; (d) a complete layer of hexagons.

about which the tetrahedron may be rotated is called a rotation axis; it is an example of a symmetry element.
The process of rotation is an example of a symmetry operation.

The symmetry elements that are important in crystallography are listed in Table 1.2. There are two
nomenclatures for labelling them, the Hermann–Mauguin system used in crystallography and the Schönflies
system used in spectroscopy. Ideally, there would be only one system which everybody uses, but this is unlikely
to come about since (a) both systems are very well established, (b) crystallographers require elements of
space symmetry that spectroscopists do not, and vice versa, (c) spectroscopists use a more extensive range of
point symmetry elements than crystallographers.

The symmetry element described above for the silicate tetrahedron is a rotation axis, with symbol n.
Rotation about this axis by 360/n degrees gives an identical orientation and the operation is repeated n times
before the original configuration is regained. In this case, n = 3 and the axis is a threefold rotation axis. The
SiO4 tetrahedron possesses four threefold rotation axes, one in the direction of each Si–O bond.

When viewed from another angle, SiO4 tetrahedra possess twofold rotation axes [Fig. 1.4(b)] which pass
through the central Si and bisect the O–Si–O bonds. Rotation by 180◦ leads to indistinguishable orientations
of the tetrahedra. The SiO4 tetrahedron possesses three of these twofold axes.

Crystals may display rotational symmetries 2, 3, 4 and 6. Others, such as n = 5, 7, are never observed in
3D crystal structures based on a regular periodic repetition of the unit cell and its contents. This is shown
in Fig. 1.4(c), where a fruitless attempt has been made to pack pentagons to form a complete layer; thus,
individual pentagons have fivefold symmetry but the array of pentagons does not. For hexagons with sixfold

Table 1.2 Symmetry elements

Hermann–Mauguin symbols Schönflies symbols
Symmetry element (crystallography) (spectroscopy)

Point symmetry Mirror plane m σ v, σ h

Rotation axis n = 2, 3, 4, 6 Cn (C2, C3, etc.)
Inversion axis n̄ (= 1̄, 2̄, etc.) –
Alternating axisa – Sn (S1, S2, etc.)
Centre of symmetry 1̄ i

Space symmetry Glide plane a, b, c, d, n –
Screw axis 21, 31, etc. –

aThe alternating axis is a combination of rotation (n-fold) and reflection perpendicular to the rotation axis. It is little used in crystallography.
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rotation axes (d), a complete layer is easily produced; both the individual hexagons and the overall array
exhibit sixfold symmetry. This is not to say that molecules which have pentagonal symmetry, n = 5, cannot
exist in the crystalline state. They can, of course, but their fivefold symmetry cannot be exhibited by the
crystal as a whole.

1.2.2 Quasicrystals

The discovery of a new state of matter, the quasicrystalline state, by Schechtman and colleagues in 1982
(and which led to the Nobel Prize in Chemistry in 2011) appeared at first sight to violate the rules concerning
allowable rotational symmetries in crystal lattices. From their single-crystal diffraction patterns, rotational
symmetries such as n = 5 but also n = 10 and 12 were observed whereas, as shown in Fig. 1.4(c), a regular
crystal lattice exhibiting fivefold rotational symmetry cannot exist. The answer to this conundrum is that
quasicrystals do not have regularly repeating crystal structures based on a single unit cell motif. Instead, they
have fully ordered but non-periodic arrays constructed from more than one motif or building block.

Elegant examples of quasisymmetry are found in so-called Penrose tiling, as shown in Fig. 1.5. In this
example, space is filled completely by a combination of red and blue diamonds; such a tiling pattern has
many local areas of fivefold symmetry but the structure as a whole is not periodic, does not exhibit fivefold
symmetry and a regular repeat unit cannot be identified. Quasicrystals have since been discovered in a wide
range of alloy systems and also in organic polymer and liquid crystal systems; they have been discovered in
Nature in an Al–Cu–Fe alloy named icosahedrite that was believed to have been part of a meteorite and had
existed on Earth for billions of years. It is probably just a matter of time before they are discovered also in
inorganic oxide materials, natural or synthetic.

In the early days of work on quasicrystals, an alternative explanation for possible fivefold symmetry was
based on twinning, as shown schematically in Fig. 1.6. Five identical crystalline segments are shown, each of
which has twofold rotational symmetry in projection. Pairs of crystal segments meet at a coherent interface
or twin plane in which the structures on either side of the twin plane are mirror images of each other. The
five crystal segments meet at a central point which exhibits fivefold symmetry as a macroscopic element of
point symmetry but the individual crystal segments clearly do not exhibit any fivefold symmetry. Schechtman
showed conclusively that twinning such as shown in Fig. 1.6 could not explain the quasicrystalline state.

1.2.3 Mirror symmetry

A mirror plane, m, exists when two halves of, for instance, a molecule can be interconverted by carrying
out the imaginary process of reflection across the mirror plane. The silicate tetrahedron possesses six mirror
planes, one of which, running vertically and perpendicular to the plane of the paper, is shown in Fig. 1.7(a).
The silicon and two oxygens, 1 and 2, lie on the mirror plane and are unaffected by reflection. The other two
oxygens, 3 and 4, are interchanged on reflection. A second mirror plane lies in the plane of the paper; for this,
Si and oxygens 3, 4 lie on the mirror but oxygen 2, in front of the mirror, is the image of oxygen 1, behind
the mirror.

1.2.4 Centre of symmetry and inversion axes

A centre of symmetry, 1̄, exists when any part of a structure can be reflected through this centre of symmetry,
which is a point, and an identical arrangement found on the other side. An AlO6 octahedron has a centre of
symmetry, Fig. 1.7(b), located on the Al atom. If a line is drawn from any oxygen, e.g. 1, through the centre
and extended an equal distance on the other side, it terminates at another oxygen, 2. A tetrahedron, e.g. SiO4,
does not have a centre of symmetry (a).
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72° 36°

Figure 1.5 Two-dimensional Penrose tiling constructed by packing together two different sets of parallelo-
grams. Adapted with permission from C. Janot, Quasicrystals, C� 1997 Oxford University Press.

The inversion axis, n̄, is a combined symmetry operation involving rotation (according to n) and inver-
sion through the centre. A 4̄ (fourfold inversion) axis is shown in (c). The first stage involves rotation by
360/4 = 90◦ and takes, for example, oxygen 2 to position 2�. This is followed by inversion through the centre,
at Si, and leads to position 3. Oxygens 2 and 3 are therefore related by a 4̄ axis. Possible inversion axes in
crystals are limited to 1̄, 2̄, 3̄, 4̄ and 6̄ for the same reason that only certain pure rotation axes are allowed. The
onefold inversion axis is not a separate symmetry element, but is simply equivalent to the centre of symmetry;
also, the twofold inversion axis is the same as a mirror plane perpendicular to that axis.
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unit cell with
2-fold rotation axes twin boundary

Figure 1.6 Hypothetical twinned structure showing fivefold symmetry. Adapted with permission from J. M.
Dubois, Useful Quasicrystals, pg 10, C� 2005 World Scientific Publishing Company.

(b) (c)(a)

2

3

1
–

4
–

AlSi Si

2 2′1 2

43 Mirror
plane

1

Figure 1.7 Symmetry elements: (a) mirror plane; (b) centre of symmetry; (c) fourfold inversion axis.
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Figure 1.8 Arrangement of coins with heads (H) and tails (T) illustrating (a) a 21 screw axis parallel to a and
(b) an a glide plane perpendicular to b; in each case, translation between symmetry-related objects is by a/2.

1.2.5 Point symmetry and space symmetry

The symmetry elements discussed so far are elements of point symmetry. For each, at least one point stays
unchanged during the symmetry operation, i.e. an atom lying on a centre of symmetry, rotation axis or mirror
plane does not move during the respective symmetry operations. Finite-sized molecules can only possess
point symmetry elements, whereas crystals may have extra symmetries that include translation steps as part
of the symmetry operation. These are elements of space symmetry, of which there are two types.

The screw axis combines translation and rotation; the atoms or ions in a crystal which possesses screw
axes appear to lie on spirals about these axes. A schematic example is shown in Fig. 1.8(a). All you need to
demonstrate a screw axis is a handful of coins which can be arranged on a flat surface with either their heads
(H) or tails (T) facing upwards. The symbol for a screw axis, XY, indicates translation by the fraction Y/X
of the unit cell edge in the direction of the screw axis together with simultaneous rotation by 360/X◦ about
the screw axis. Thus, a 42 axis parallel to a involves translation by a/2 and rotation by 90◦; this process is
repeated twice along a for every unit cell.

The glide plane combines translation and reflection, as shown schematically in Fig. 1.8(b). Translation
may be parallel to any of the unit cell axes (a, b, c), to a face diagonal (n) or to a body diagonal (d). The a, b,
c and n glide planes all have a translation step of half the unit cell in that direction; by definition, the d glide
has a translation step which is 1/4 of the body diagonal. For the axial glide planes a, b and c, it is important




